17 research outputs found

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Wastewater-Based Epidemiology of Stimulant Drugs: Functional Data Analysis Compared to Traditional Statistical Methods

    Get PDF
    Background Wastewater-based epidemiology (WBE) is a new methodology for estimating the drug load in a population. Simple summary statistics and specification tests have typically been used to analyze WBE data, comparing differences between weekday and weekend loads. Such standard statistical methods may, however, overlook important nuanced information in the data. In this study, we apply functional data analysis (FDA) to WBE data and compare the results to those obtained from more traditional summary measures. Methods We analysed temporal WBE data from 42 European cities, using sewage samples collected daily for one week in March 2013. For each city, the main temporal features of two selected drugs were extracted using functional principal component (FPC) analysis, along with simpler measures such as the area under the curve (AUC). The individual cities’ scores on each of the temporal FPCs were then used as outcome variables in multiple linear regression analysis with various city and country characteristics as predictors. The results were compared to those of functional analysis of variance (FANOVA). Results The three first FPCs explained more than 99% of the temporal variation. The first component (FPC1) represented the level of the drug load, while the second and third temporal components represented the level and the timing of a weekend peak. AUC was highly correlated with FPC1, but other temporal characteristic were not captured by the simple summary measures. FANOVA was less flexible than the FPCA-based regression, and even showed concordance results. Geographical location was the main predictor for the general level of the drug load. Conclusion FDA of WBE data extracts more detailed information about drug load patterns during the week which are not identified by more traditional statistical methods. Results also suggest that regression based on FPC results is a valuable addition to FANOVA for estimating associations between temporal patterns and covariate information
    corecore